↓ +45 (50) 26 90 72
➢ inar.timiryasov@nbi.ku.dk
Iminar.github.io
in inar-timiryasov
✓ ITimiryasov
♥ Ininar
(③) Inar Timiryasov

Inar Timiryasov

My academic background is in theoretical physics, where I applied advanced numerical tools to solve complex problems. Initially, I employed machine learning and neural networks as tools to analyze physical phenomena. Now, my focus has shifted to a deep interest in comprehending the intricacies of AI. I am particularly drawn to the challenges of interpreting and responsibly improving Large Language Models.

AI/ML Experience

Training Large Language Models

Participated in the BabyLM challenge, focusing on training LLMs on a small dataset. I proposed, implemented, and trained models featuring various architectural choices (local attention, RopE, SwiGLU nonlinearity), and used techniques like sharpness-aware minimization and knowledge distillation. The model I developed ranked in the top 5% and was the best decoder model in the "small-strict" task.

Deep-learning for Physics

- Leading the development of a Bert-style foundational model on particle physics data, focusing on fine-tuning for specific tasks.
- Mentoring students and heading the ML components in "New Physics searches with automated anomaly detection". Two ongoing projects involving gravitational wave data and particle collider data from CERN.

Kaggle Expert

Participated in two Kaggle Competitions, where I initiated and led the teams

- G2Net Detecting Continuous Gravitational Waves: Gold Medal, ranking in the top 1%.
- *IceCube Neutrinos in Deep Ice*: Silver Medal, ranking in the top 2%.

Academic Experience

2021-present **Senior Postdoctoral Researcher**, *Niels Bohr Institute, University of Copenhagen* Developing AI models for applications in particle physics. Implemented an effective method to reinterpret LHC data analysis pipelines, extending them to new phenomena.

2016-present Visiting Researcher, CERN

An active member of the Search for Hidden Particles (SHiP) collaboration that pioneered application of *Generative Adversarial Networks* to particle physics modeling.

2016–2021 **Postdoctoral Researcher**, École Polytechnique Fédérale de Lausanne

Transformed complex theoretical problems into computable models and used advanced numerical tools to analyze them. Taught *group theory* and *classical field theory* courses to Masters's students. Supervised and co-supervised 8 Master's students, guiding thesis projects and research.

Technical Skills Languages: Python, Julia, Wolfram Mathematica, C/C++ AI/ML: PyTorch, Transformers, scikit-learn, PyTorch Lightning, Keras, JAX Data Science: Pandas, NumPy, Matplotlib, PyArrow Tools: Linux, bash/zsh, Git, HPC (Slurm, Lustre) Numerical Markov Chain Monte Carlo, Stiff ODEs, Computer Algebra, Lattice Methods for Methods: PDEs Mathematics: Statistics, Tensor Algebra, Real and Complex Analysis, Differential Geometry, Field Theory, Group Theory, Differential Equations, Information Theory Education 2013 – 2016 PhD in Theoretical Physics, Lomonosov Moscow State University Developed numerical methods for searches for new particles. My results became a part of the physics program of the planned SHiP experiment at CERN. Assisted in teaching courses on Group Theory, Quantum Field Theory, and Advanced Numerical Methods. 2007 – 2013 Master's Degree in Physics, Lomonosov Moscow State University Graduated Summa Cum Laude. Average grade: 4.96 / 5.0. Academic Service Conference 1-2 February 2024, organizing a session on *Geometric Deep Learning* at the "Danish organization: Digitalization, Data Science and Al" conference. 23 February 2023, organized SCIENCE Postdoc Day 2023 at the University of Copenhagen, with 150 attendees. 13-17 June 2022, organized an online workshop Physics of the Early Universe, with 1005 registered participants. Peer Review: Referee for top high-energy physics journals: Phys.Rev.Lett.; Phys.Rev.D.; JCAP; JHEP; Int.J.Mod.Phys.A.; JEPT Publications \circ 41 papers (13 as a member of the SHiP collaboration) in the high-energy physics database inSPIRE-hep. ○ *1500+ citations*, H-index is 26 according to Google Scholar.

- Selected O Inar Timiryasov, Jean-Loup Tastet, "Baby Llama: knowledge distillation from an ensemble of teachers trained on a small dataset", arXiv:2308.02019, Accepted to CoNLL-CMCL 2023, BabyLM Challenge Shared Task.
 - Juraj Klarić, Mikhail Shaposhnikov, Inar Timiryasov, "Uniting Low-Scale Leptogenesis Mechanisms", arXiv:2008.13771, Phys. Rev. Lett. 127 no. 11, (2021) 111802.

SHiP Collaboration, "Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks,", arXiv:1909.04451, JINST 14 (2019)P11028.